发表论文论著:
[1] Wang Kun, He Ya-Ling*. Thermodynamic analysis and optimization of a molten salt solar power tower integrated with a recompression supercritical CO2 Brayton cycle based on integrated modeling. Energy Conversion and Management, 2017, 135(1):336-350.
[2] Wang Kun, Zhu Han-Hui, He Ya-Ling*. Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts.Applied Energy, 2017, 195:819-836.
[3] Wang Kun, Li Ming-Jia*, Guo Jia-Qi, Li Pei-Wen, Liu Zan-Bin. A systematic comparison of different S-CO2 Brayton cycle layouts based on multi-objective optimization for applications in solar power tower plants. Applied Energy, 2018, 212: 109-121.
[4] Wang Kun, He Ya-Ling*, Qiu Y, Zhang YW. A novel integrated simulation approach couples MCRT and Gebhart methods to simulate solar radiation transfer in a solar power tower system with a cavity receiver. Renewable Energy, 2016, 89: 93-107.
[5] Wang Kun, He Ya-Ling*, Xue Xiao-Dai, Du Bao-Cun. Multi-objective optimization of the aiming strategy for the solar power tower with a cavity receiver by using the non-dominated sorting genetic algorithm. Applied Energy, 2017, 205: 399-416.
[6] Wang Kun, He Ya-Ling, Li Peiwen, Li Ming-Jing, Tao Wen-Quan. Multi-objective optimization of the solar absorptivity distribution inside a cavity solar receiver for solar power towers. Solar Energy, 2017, 158: 247-258.
[7] Wang Kun, He Ya-Ling*, Cheng Ze-Dong. A design method and numerical study for a new type parabolic trough solar collector with uniform solar flux distribution. Sci. China Technol. Sci, 2014, 57(3): 531-540.
[8] Min Chun-Hua, Yang Xu-Guang, Wang Kun*, Yuan Yong-Wan, Xie Li-Yao. An inverse optimization of convection heat transfer in rectangle channels with ribbed surface based on the extremum principle of entransy dissipation. International Journal of Heat and Mass Transfer, 2019, 130: 722-732.
[9] 王坤,何雅玲*,邱羽, 程泽东. 塔式太阳能熔盐腔体吸热器一体化光热耦合模拟研究. 科学通报, 2016, 15: 005.
|